Divisão da circunferência em cinco partes iguais.Construindo um pentágono regular. - Só Faz Quem Sabe

AD Sense responsivo

sexta-feira, 1 de novembro de 2024

Divisão da circunferência em cinco partes iguais.Construindo um pentágono regular.

Divisão de uma circunferência em cinco partes iguais. Construção de um pentágono regular inscrito em uma circunferência.

by Roberto M.
Como fazer para dividir uma circunferência qualquer em cinco partes iguais? 
Como é que se inscreve um pentágono numa circunferência? 
Como se faz par construir um pentágono regular?

Divisão da circunferência em cinco partes iguais. Construção de um Pentágono regular.

Quando dividimos uma circunferência em cinco partes iguais, os cinco pontos que achamos são também os vértices do pentágono regular inscrito na circunferência.


Vamos, então, pegar papel, lápis, régua, compasso e aprender a fazer essa construção geométrica. É só seguir os passos abaixo:

Passo 1

De início, vamos traçar uma circunferência. Marcamos um ponto C no papel e, com um compasso, traçamos uma circunferência com centro nesse ponto C e com um raio qualquer.

Traçando uma circunferência para dividi-la em 5 partes iguais.

Passo 2

Com uma régua, traçamos um diâmetro da circunferência e marcamos os pontos A e B.

Traçando um diâmetro na circunferência.

Passo3

Agora, vamos traçar um diâmetro perpendicular ao diâmetro AB já traçado. 
Utilizando a técnica aprendida no artigo “Retas perpendiculares que se cruzam num ponto dado” tracemos a perpendicular à reta AB que passe pelo ponto C.
Pegamos o compasso e, com um raio maior que BC, com centro em A e B, fazemos dois arcos acima da circunferência, que ao se interceptarem definirão o ponto D.
Em seguida, com a régua, traçamos a reta que passa pelos pontos D e C que é a perpendicular que queríamos. 
Com isto, estão definidos os pontos E e F (intersecção da reta DC com a circunferência).

Traçando 2 diâmetros perpendiculares em uma circunferência.

Passo 4

Agora, utilizando o que aprendemos no artigo "Mediatriz e ponto médio de um segmento" vamos obter o ponto M, ponto médio do raio BC.
Pegamos o compasso, e com centro em B e C traçamos os arcos acima e abaixo do segmento BC achando os pontos G e H que determinarão a mediatriz e consequentemente o ponto médio M do raio BC.

Obtendo o ponto médio do raio da circunferência, para inscrever um pentágono regular.

Passo 5

Em seguida, com centro no ponto M e com uma abertura do compasso até o ponto E, descreve-se um arco até o diâmetro horizontal AB determinando o ponto P.

Obtendo o ponto P para conseguir dividir a circunferência em 5 partes iguais.

Passo 6

A distância do ponto E ao ponto P é a medida da corda correspondente ao arco que é a quinta parte da circunferência. 
Fazendo-se centro em E, transporta-se a distância EP para a circunferência e obtém-se o ponto 1. O arco 1E é a quinta parte da circunferência.

Obtenção do ponto 1. A distância 1E é a quinta parte da circunferência.

Passo 7

A partir do ponto 1, marca-se mais três vezes este comprimento (1E) e determina-se os pontos 2, 3 e 4.

Marcando-se os cinco pontos da divisão da circunferência em 5 partes iguais.

Passo 8

Os pontos 1, 2, 3, 4 e E são os vértices do pentágono regular inscrito nessa circunferência.

Construção do pentágono regular na circunferência dividida em 5 partes iguais.

Artigos Recomendados:

12 comentários:

  1. aprendi isso na decada de 60, mas havia esquecido, ótima explicação as figura s ja foram suficientes para recordar, precisava desenhar uma estrela de 5 pontas, ótima explicação de geometria básica. obrigado

    ResponderExcluir
  2. Foi bom recordar... vou ensinar aos meus netos.
    Obrigada.

    ResponderExcluir
  3. Grata! Relembrar é bom.Precisava de um pentágono para fazer lanternas prá turma de meu neto.

    ResponderExcluir
  4. Legal, agradeço ajudou a relembrar, precisava desenhar uma estrela de 5 pontas. Muito boa a explicação. Valeu👍

    ResponderExcluir
  5. Obrigado. Precisava dividir um queijo em 5 pedaços. Deu muito certo!

    ResponderExcluir
  6. muito bem explicado, não lembrava mais mas agora mãos a obra vou fazer um calendoscopio para as crianças de 5 lados sendo que ja fiz um de tres lados ficou otiomo! Vovozada vamos alegrar os netos kkkkk

    ResponderExcluir
  7. foi muito bom gostaria de fazer isso outras e outras vezes . amei

    ResponderExcluir
  8. Foi muito prático, e compreensivo

    Muito obrigado pela disponibilidade ao conteúdo.Aprendi muito

    ResponderExcluir